

Application technology, 5th edition Volume III: Fonterra radiant heating and cooling

Fonterra Industry

Planning

System description

Fonterra Industry, developed for thermal activation of floor surfaces (usually concrete floors without covering), uses the limitless application possibilities with steel, clamping, or fibre cement boards.

It presents the largest possible design freedom in the utilisation of various commercial buildings, e.g. warehouses with forklift truck operation, production floors with light or heavy machinery, or different types of workshops.

The suitability of the system is not affected by requirements in the traffic or payload of the buildings. The only variable feature is the thickness of the floor panel which must be determined by the structural engineer.

System features

- Oxygen sealed Fonterra pipes 20x2.0 or 25x2.3 mm acc. to DIN 4726
- System also suitable for cooling
- Unlimited traffic load
- Variable installation clearances
- Even temperature distribution because the full-area heating of the hall floor
- Low investment costs and fast pay-off thanks to an economical and energy-efficient heat distribution system
- No additional maintenance costs
- Use of tested system components
- Compliance with the requirements of the Workplaces Ordinances regarding the floor surface temperature of min. 18 °C
- Object-focused project planning adapted to the individual building for absolute freedom of design of the usable surfaces
- Can be combined with other heating systems
- No static requirements in the ceiling construction

Fonterra Industry Installation example

Fig. 227: Fonterra Industry, installation example

Fonterra Industry

Fig. 228: Fonterra Industry

System components

Fixing/protection							
Pipe guide	Protective pipe for joints	Clamping rail					
	System pipes						
PB pipe 20 x 2.0 mm 25 x 2.3 mm	PE-Xc pipe 20 x 2.0 mm 25 x 2.3 mm	PE-RT pipe 20x2.0mm 25x2.3mm					
manifold							
Industry manifold 1½ inch							
	Connector and accessories						
Adapter	Coupling	Ball valve set					
with SC-Contur	with SC-Contur	Dall valve set					

Tools for Fonterra Industry

Name	Article number
Viega press jaw 20, 25 for Pressgun Picco	485573, 485580
Viega press tool Pressgun Picco	622404
Pipe reel	562359, 754761
Pipe shear up to 25 mm	652005

Tab. 109: Tools for Fonterra Industry

System components

Name	Article number		
PB pipe 20 x 2.0 240 m	703561		
PB pipe 25 x 2.3 240 m	703585		
PE-Xc pipe 20x2.0 240m	613631		
PE-Xc pipe 25x2.3 240m	636579		
PE-RT pipes 20x2.0 240m	657345		
PE-RT pipes 20 x 2.0 480 m	657352		
PE-RT pipes 25x2.3 240 m	657369		
PE-RT pipes 25x2.3 480 m	657376		
Clamping ring screw fitting 20x34inch	614645		
Clamping ring screw fitting 25x34 inch	640972		
Coupling 20x2.0	619824		
Coupling 25x2.3	640996		
Adapter with SC-Contur 20x34 inch	614652		
Adapter with SC-Contur 25x ¾ inch	636814		
Coupling with SC-Contur 20x2.0	614720		
Coupling with SC-Contur 25x2.3	636586		
Pipe guide 20	609504		
Pipe guide 25	637019		
Protective pipe for joints 20 x 28	562731		
Protective pipe for joints 25 x 34	636500		
Cable tie 200 mm	638344		
Clamping rail 20	613624		
Clamping rail 25	636524		
Industry manifold 1½ inch 4 to 16 outlets	various		
Fonterra ball valve set 11/2 inch	696085		
Mounting console for industry manifold	613082		

Tab. 110: System components

Technical data

System pipes	PE-Xc 20x2.0	PE-Xc 25 x 2.3	PB 20x2.0	
Dimensions	20x2.0	25x2.3	20x2.0	
Minimum bending radius		6x	5xd _a	
Operating condition acc. to ISO 10508	Class/[MPa]			4/0.6
Operating condition acc. to	Class/[MPa]	4/0.8	4/0.6	
ISO 15875-1	Class/[MPa]	5/0.6		
Operating condition acc. to ISO 22391-1	Class/[MPa]			
Max. operating temperature	[°C]	90	70)
Mounting temperature	[°C]	≥ +5		≥ -5
Water volume	[l/m]	0,2	0,32	0,2
Heat conductivity λ	[W/(m·K)]	0,3	35	0,22
Linear coefficient of length expansion	[K ⁻¹]	2.0 x	10 ⁻⁴	1.3 x 10 ⁻⁴
Weight	[g/m]	118	170	120

Technical data system pipes

Tab. 111: Technical data system pipes (Part 1)

System pipes		PB 25 x 2.3	PE-RT 20 x 2.0	PE-RT 25 x 2.3	
Dimensions	[mm]	25x2.3	20x2.0	25x2.3	
Minimum bending radius			6 x d _a		
Operating condition acc. to ISO 10508	Class/[MPa]	4/0.6			
Operating condition acc. to	Class/[MPa]				
ISO 15875-1	Class/[MPa]				
Operating condition acc. to ISO 22391-1	Class/[MPa]		4/0.6	4/0.6	
Max. operating temperature	[°C]		70		
Mounting temperature	[°C]		$\geq -$	+5	
Water volume	[l/m]	0,32	0,2	0,32	
Heat conductivity λ	[W/(m·K)]		0,4	40	
Linear coefficient of length expansion	[K ⁻¹]		1.8×10 ⁻⁴		
Weight	[g/m]	160	122	170	

Tab. 112: Technical data system pipes (Part 2)

Technical data

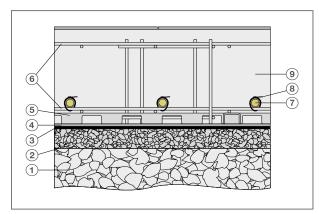
Fonterra Industry						
Pipe dimensions	20 x 2.0 mm 25 x 2.3 mm					
Installation clearances	variable					
Mounting time RA 300	~ 0.5 min*					
Max. heating circuit length	150 m with 20 x 2.0 mm 200 m with 25 x 2.3 mm					
Average clearance of the clamping rails	200 cm					
Average clearance of the pipe fasteners	75 cm					

Tab. 113: Technical data

*running meter, depending on fixing type

Construction types

Construction variants


Fonterra Industry is suitable for use in different construction variants, primarily reinforced concrete and steel fibre concrete floor panels as well as vacuum concrete.

Reinforced concrete

Usually, industry surface heating systems are inserted in reinforced concrete panels. Reinforced concrete panels are floor panels reinforced with steel mats.

Fonterra Industry is mounted to the bottom layer of the reinforcement by means of cable ties or drilling tools.

If the structural analysis establishes the need for a layer in the neutral zone, this installation layer must be created by using suitable spacers and applying another layer of structural steel (e.g. Q131).

Construction variant with reinforced concrete

Fig. 229: Construction variant with reinforced concrete

Key

- 1) Base layer
- Blinding concrete
- ③ Building waterproofing acc. to DIN 18195
- (4) Sliding layer
- (5) Spacers
- 6 Reinforcement
- ⑦ Pipe (20x2.0 or 25x2.3 mm)
- (8) Mounting strap
- ⑦ Concrete

Construction variant with steel fibre concrete

Steel fibre concrete

Steel fibre concrete is concrete reinforced with steel fibres. It goes without steel mat reinforcement.

For this variant, Fonterra system pipes are laid in clamping rails and fastened on-site on the blinding concrete.

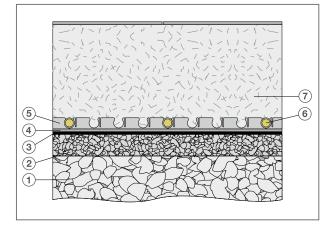


Fig. 230: Construction variant with steel fibre concrete

Key

- 1 Base layer
- Blinding concrete
- ③ Building waterproofing acc. to DIN 18195
- ④ Sliding layer
- (5) Clamping rail
- 6 Pipe (20x2.0 or 25x2.3 mm)
- ⑦ Steel fibre concrete

Vacuum concrete

For floor panels provided in vacuum concrete variant, the mixing water is removed from the reinforced or prestressed concrete by means of a vacuum pump and filter mats or vacuum formwork. This process improves the early and final consolidation of the concrete layer close to the surface.

Heat insulation

Generally, check whether the EnEV (non-residential buildings with low internal temperatures), DIN4108-2 or DINEN1264 specify the need for heat insulation.

No heat insulation is required if the temperature in the room is below 12 $^{\circ}$ C, the building is heated for less than 4 months per year, the doors to the building stand open for prolonged periods without interruption, or in cases of hardship acc. to § 25.

With an internal room temperature between 12 and 19 °C, DIN 4108-2 Tab. 3 specifies a minimum thermal resistance of the floor of 0.9 m^2 K/W up to a room depth of 5 m. This corresponds to insulation WLG 040 with a thickness of approx. 40 mm.

Note that a thermal insulation layer, if provided, will be the weakest link in the floor construction in terms of load.

If required nevertheless, a so-called perimeter insulation (usually on extruder foam panels) is suited best. Applied directly on the soil, it is non-sensitive to moisture and extremely pressure-proof.

According to EnEV §25, a waiver can be applied for with the authority responsible according to the law of the respective Federal State if the heat insulation requirements would cause unreasonable costs and efforts, or other undue hardships. Evidence must be submitted by way of a respective payoff calculation.

According to DIN 4108, any heat insulation provided must only be included in the calculation of the OHTC value if situated above the building waterproofing, or if the manufacturer can prove suitability acc. to DIN 4108 by means of general building approval.

Notes on interpretation

The traffic loads described in DIN 1055 part 3 are changing or variable loads of the building part (e.g. from machines, materials, vehicles, etc.). The permissible traffic load is determined by the structural engineer; it affects the dimensioning of the concrete panel. Heating pipes embedded in the concrete do not affect its pressure resistance.

Depending on the use/stress, different requirements in the quality of the concrete apply.

When selecting the heating level, take the drilling depth for rack or machine anchoring devices into consideration, if applicable; possibly, the pipelines must be positioned at a different height or certain areas must be bypassed (so-called taboo zones).

Drilling depth

In commercially used buildings, racks or foundations often need to be anchored in the floor panels. The technical planner must be informed of the required drilling depths, and consider them in the design. Usually, the Fonterra Industry system pipes lie deep enough on the bottom reinforcement or in the clamping rail. However, if the height of the floor panel is not sufficient, the pipelines must bypass this area, creating so-called taboo zones. No pipelines must cross these zones.

Performance data

The heat requirement must be determined according to DINEN 12831. In case of industrial buildings, various correction factors, e.g. building heights, must be considered.

According to Appendix B Table 2.1 of DINEN 12831, a room height correction factor is required for determination of the standard heat loss in special cases. Since Fonterra Industry dissipates most of the heating output as radiant heat, factor 1 can be applied with hall heights of max. 15 m.

Heat flow density diagrams

The heating fluid overtemperature, depending on the selected floor covering, can be read from the diagrams below following determination of the heat flow density, which follows from the calculated standard heating load of a room.

Reading example for Fonterra Industry 20

- Calculate the required heat output per m², or take it over from the heating load calculation, e.g. q = 60 W/m²
- Read the heating fluid overtemperature from the diagram
- e.g. 15 K with VA 200 mm
- Room temperature + overtemperature of the fluid = heating fluid temperature rature
- e.g. 18 °C + 15K = 33 °C (mean heating water temperature) = 38 °C supply temperature+ 28 °C return temperature

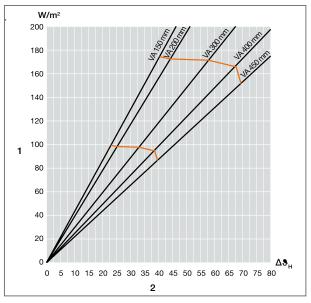
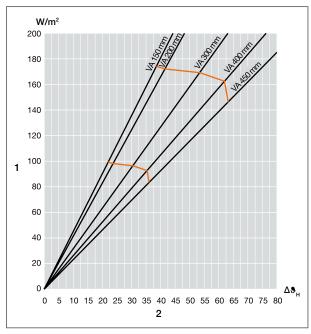


Fig. 231: Output diagram Fonterra Industry 20

Key

- (1) Heat flow density q in [W/m2]
- (2) Heating fluid overtemperature $\Delta \vartheta_{H}$
- IC installation clearance (VA)

Output diagram Fonterra Industry 20



Reading examples for Fonterra Industry 25

- Calculate the required heat output per m², or take it over from the heating load calculation, e.g. q = 60 W/m²
- Read the heating fluid overtemperature from the diagram e.g. 18 K with IC 300 mm
- Room temperature + overtemperature of the fluid = heating fluid temperature

e.g. 18 °C + 18K = 36 °C (mean heating water temperature) =

41 °C supply temperature+ 31 °C return temperature

Output diagram Fonterra Industry 25

Fig. 232: Output diagram Fonterra Industry 25

Key

- 1) Heat flow density q in [W/m2]
- (2) Heating fluid overtemperature $\Delta \vartheta_{H}$
- IC installation clearance (VA)

Any losses to adjacent areas not considered in the heating load calculation must be adjusted in the form usually applied with underfloor heating, i.e. "adjusted heat requirement plus actual losses".

Pressure loss diagram for pipe 20x2.0 and 25x2.3

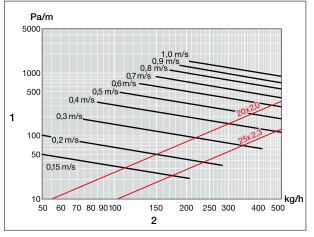


Fig. 233: Pressure loss diagram for pipe 20x2.0 and 25x2.3

Key

1) Pressure gradient R in [Pa/m]

② Mass flow m in [kg/h] (fluid: water)

Material requirement

Article Installation Quantities/ **Pro-rata** Article designation clearance requirement number packing units VA 150 m/m² Pipe VA 300 3.1 m/m² 613631 240 m 20 x 2.0 VA 450 2.0 m/m² VA 150 6.5 m/m² Pipe VA 300 3.1 m/m² 636579 240 m 25 x 2.3 VA 450 2.0 m/m² 20 m Clamping rail 20 all Cl 0.5 m/m² 613624 **Clamping rail 25** all CI 0.5 m/m² 636524 20 m VA 150 9pc./m² Cable tie VA 300 4 pc./m² 100 pc. 638344 VA 450 2.5pc./m² VA 150 9 pc./m² **Fixing set** VA 300 4 pc./m² 636128 100 pc. VA 450 2.5pc./m²

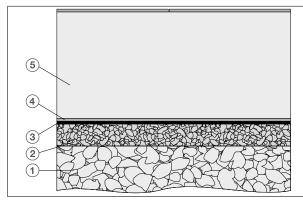
Tab. 114: Material requirement

Material requirement

Mounting

Structural requirements

Contrary to conventional installation of underfloor heating systems, industrial surface heating systems are installed parallel to the reinforcement and concrete pouring work. Accordingly, careful planning and coordination among the individual trade lots is the precondition for successful completion. Before the concrete is poured, a pressure test must be done and documented to check the heating surfaces for leak tightness.


Underground, base layer, blinding concrete

The underground must have an even composition and a sufficient carrying capacity. In case of insufficient carrying capacity of the compacted underground, a base layer must be applied. It absorbs the stresses from the floor panel, deflecting them to the underground. Usually, the underground consists of pebbles or crushed rock with hydraulic binding agents (e.g. cement). A level surface must be provided for reception of the floor panel. This is achieved by means of a so-called blinding layer, which can be produced by means of a thin concrete or cement screed layer. As an alternative, a thin layer of fine sand can be applied (sand alignment).

Building waterproofing

Before the floor panel is installed, the sub-construction must be approved by the site management.

Building waterproofing features are determined by the building planner and must be carried out acc. to DIN 18195 or DIN 18336.

Building waterproofing

- Fig. 234: Building waterproofing
- Key
- Base layer
- ② Blinding concrete
- ③ Building waterproofing acc. to DIN 18195
- ④ Sliding layer
- ⑤ Concrete

Usually, building waterproofing is made using sheet material such as bitumen or PVC. In case of low requirements in the humidity of the room air, a capillary-breaking layer of approx. 15 cm thickness can be sufficient.

Pipe installation

The heating circuits in the selected pipe dimension are mounted in a meandering manner in the applicable installation clearance according to the planning specifications. The pipelines are laid and fixed as shown in the illustrations below. For pipe deflections, low-stress fixing must be provided, and the minimum bending radius must be observed (depending on pipe dimension and material).

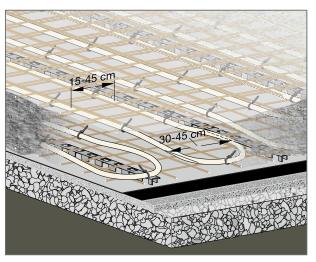


Fig. 235: Mounting on construction steel mat

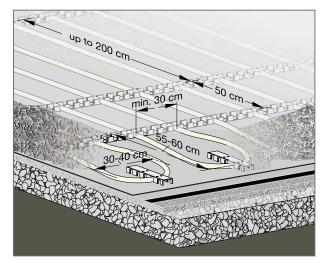


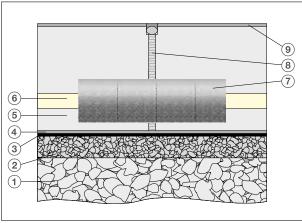
Fig. 236: Mounting on clamping rail, e.g. Fonterra pipe 25x2.3mm

Mounting on construction steel mat

Mounting on clamping rail, e.g. Fonterra pipe 25x2.3 mm

If the processing temperature during mounting of the Fonterra Industry system pipes is < 10 °C, adjustment of the bending radii may be required.

Joints


The structural engineer is responsible for planning and arrangement of the joints, as well as for the determination of the field size. This depends on various factors such as payloads, floor panel type, panel thickness, structural subdivisions (columns, walls, etc.).

When installing the industrial underfloor heating, the structural engineer's joint plan must be complied with. The heating circuits and connection lines must be coordinated with the joint plan.

Generally, three types of joints are differentiated:

Movement joints, also called running joints, separate the concrete panel over its entire length from other building parts such as walls, supports, channels etc.; they are created with expansion joint strips or with a suitable insert in a width of approx. 20 mm.

Supply lines crossing the movement joints must always be sheathed with a suitable protective sleeve.

Movement joints

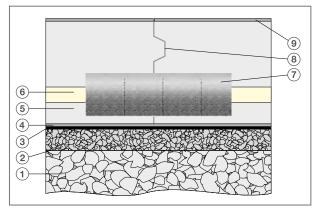
Fig. 237: Movement joints

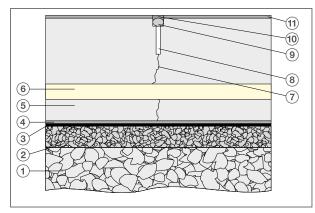
Key

- Base layer
- Blinding concrete
- ③ Building waterproofing acc. to DIN 18195
- ④ Sliding layer
- (5) Concrete
- 6 Pipe (20x2.0 or 25x2.3 mm)
- ⑦ Protective sleeve (I=1 m)
- (8) Press joint
- Ø Wear layer

Press joints, also called daywork joints, are no movement joints. They are generated when the concrete fields are poured at different times. They can be connected to each other by means of a tongue and groove connection, or by dowels. To protect the heating pipe from mechanical stresses during mounting (e.g. erection of formwork on the heating pipe), it must be sheathed by a suitable protective sleeve of approx. 1 m length.

Press joints




Fig. 238: Press joints

Key

- 1) Base layer
- Blinding concrete
- ③ Building waterproofing acc. to DIN 18195
- ④ Sliding layer
- (5) Concrete
- 6 Pipe (20x2.0 or 25x2.3 mm)
- ⑦ Protective sleeve (I=1 m)
- (8) Press joint
- (9) Wear layer

Concealed joints with a width of approx. 3 to 4 mm are rated break points cut subsequently into the concrete layer to a depth of approx. 25 to 30% of the panel thickness.

Concealed joints

Fig. 239: Concealed joints

Key

- 1) Base layer
- Blinding concrete
- ③ Building waterproofing acc. to DIN 18195
- (4) Sliding layer
- (5) Concrete
- 6 Pipe (20x2.0 or 25x2.3 mm)
- ⑦ Rated break point
- ⑧ Concealed joint
- (9) Joint filler material (e.g. foam rubber)
- 1 Elastic joint filling
- 1) Wear layer

The crack intended to form below the cut has no effect on the heating pipe; accordingly, no sheathing is required here. Joints in the floor panel must also be provided for in the floor covering or the wear layer, and sealed with elastic fillers.

Wear layer

The building planner decides on the manner and type of executing the wear layers. In accordance with the stress (e.g. from fork-lift truck traffic), different coats (mastic asphalt, magnesia screed, cement-bonded hart substances etc.) acc. to DIN 18560 can be applied.

Joints in the concrete panel must be provided along the same lines in the coat.

Connection to the manifold

Viega industry manifolds are suitable for use in heating systems according to DINEN12828 for connection of heating circuits under the specified operating conditions.

The manifold can be mounted in vertical position, with outlet facing up or down, or in horizontal position at a storey floor.

If the manifold is positioned below the heating level, an air separator must be provided to avoid air cushions.

It must only be installed with original Viega system accessories and suitable mounting tools.

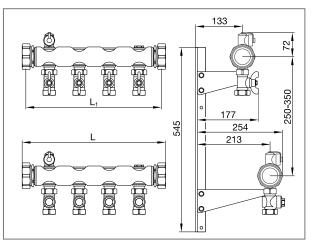
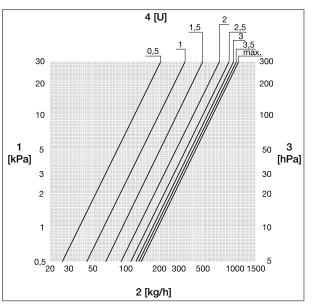


Fig. 240: Installation dimensions of industry manifold


L1 L Art. no. **Outlets** Kvs value (m³/h) Industry manifold, (mm) (mm) technical data 6.52 7,74 8,95 10.14 11,33 12,52 13,7 14,87 15,93 16,98 17,95 18,83 19,66

Tab. 115: Industry manifold, technical data

Manifold installation dimensions

	K _ν value (m³/h) Number of revolutions (U)							K _{vs} value (m ³ /h)	Target values of the valves
0,25	0,5				2,5	3	3,5		of the values
0,22	0,37	0,62	0,92	1,27	1,55	1,72	1,85	1,93	
Tab. 11	6: Targ	et value	es of the	e valve	S				Florest bergen ber

Flowthrough diagram

Fig. 241: Flowthrough diagram

Key

- (1) Pressure loss ∆p [kPa]
- (2) Mass flow m [kg/h]

(3) Pressure loss ∆p [hPa]

(4) Number of revolutions [U]

To ensure an even flow through the individual heating circuits, hydraulic calibration of the heating circuits is required.

The presettings at the individual regulation valves are made by means of the flow diagram and the calculated mass flows.

Example:

- Pressure loss most unfavourable circuit = 220 mbar (value from project planning)
- Pressure loss circuit to be calibrated
 = 130 mbar (value from project planning)
- Differential pressure to be calibrated = 220 mbar - 130 mbar = 90 mbar
- Mass flow of the circuit to be calibrated = 180 kg/h (value from project planning)
- Transfer the values into the diagram and get the reading for the setting revolutions.

Control

Heating systems must provide the output needed to fulfil the current heat requirement.

For this reason, the EnEV requires the installation of an automatic device for controlling the room temperature separately for each room or for reduction and switch-off of the heat supply in centrally heated buildings.

In industrial and non-residential buildings used for one purpose only, group or zone control is permissible.

To exclude hydraulic problems, we recommend to use suitable control components (electronically controlled pumps, differential pressure regulators etc.).

Commissioning

Functional heating

After completion of the concrete pouring and covering work and after expiry of a defined period of time, concrete panels with integrated Fonterra surface heating systems must undergo a function test.

This functional heating is not only intended to dry out the concrete but also as a function test according to VOB DIN 18380. With concrete thicknesses of up to 30 cm, the test is usually done as follows:

- Start of heating the floor surface approx. 28 days after installation and after approval by the site management/structural engineer
- Determine the floor temperature; set the supply temperature 5K higher, and maintain for one week
- Increase the supply temperature by 5K every day until the max. design supply temperature is reached
- Maintain the design supply temperature for one day
- Reduce the supply temperature by 10K per day until the operating temperature is reached
- Setting the operating temperature

If there is the likelihood of frost, do not decommission the system, or take appropriate protective measures (addition of anti-freeze).

If the anti-freeze is not required for normal operation, the system must be cleaned by flushing with at least three water exchanges.

Functional heating

We recommend to retain the document.

Building project					Construction stage Distribu- tion list			
Building owner's address								
Address of the qualified installa- tion company						Date		
The functional heating of concrete surfaces is intended to check the heating system/the floor surface, and it may speed up the screed curing process. Start of heating at the earliest 28 days after concrete pouring and approval by the site management								
 General notes The heating process must be slow and continuous. During functional heating, the heating surface must not be exposed to draughts. Set the supply temperature 5 K above floor temperature, but at least 20 °C, and maintain for 7 days. Increase the supply temperature by 5 K per day until the maximum design supply temperature is reached. Maintain the design supply temperature for one day. After that, reduce the supply temperature by 10 K per day until operating temperature is reached. 								
Materials used				Pipes:	□ 20x2.0mm	□ 25 x 2.3 mm	n	
Functional heating log								
with supply temperature 2	20 - 25 °C			Start:		End:		
with maximum design sup	oply temperatu	re in the	supply line			reached on:		
Interruptions:	Ľ] yes	from:	to:		□ no		
The system was approved	d for further bui	lding wo	ork at an outsi	de tempe	rature of °C.			
\Box At this point, the system \Box At this point, the floor w \Box All windows and extern	vas heated at a	supply t		of °C.				
Notes on commissioning The supply temperatures and the individual room temperature regulation must be set in such a way that the maximum heating surface temperature in the proximity of the heating pipes is not exceeded.								
Comments								
Building owner	S	Site man	agement			Qualified ins tion compar	oreannea	
Date/signature/stamp								

Handover certificate

This document is handed over to the planner/building owner after completion of the installation work.

Building project			Construction stage Distribution list		
Building owner's address					
Address of the qualified installa- tion company				Date	
Pressure test carried out a	.cc. to pressure test log on	:		□ yes	□ no
Visual inspection of pipe c	onnectors carried out?			□ yes	□ no
Position of couplings mark	ed in the installation plan?)		□ yes	□ no
Leak tightness established	and documented?			□ yes	□ no
Any leaks were remedied a	and reported in a separate	log.		□ yes	□ no
Laying of the registers acc. to the installation plan	Plan designation:			As at:	
Status of the sys- tem on handover	□ System is full (Caution:	: if not runnir	ng, system is not frost	t proof)	
	□ System has been empt	tied and is fr	ost proof		
	□ System is not run	ning			
Comments					
Building owner		Site manag	gement	Qualified	installation company
Date/signature/stamp					

Pressure test

This document must be handed over to the planner/building owner after completed pressure test. We recommend to retain the document.

Building project				Construc-					
				tion stage					
Duilding our orle				manifold					
Building owner's address									
Address of the				Date					
qualified instal- lation company									
Before pouring the concrete, the leak tightness of the heating circuits is tested with water. The leakage test is carried out at the finished but not yet covered pipelines. Notes on the test procedure									
	with filtered water a								
	up water must not ex								
				re and the filling	water t	emperature, wait for 30			
	ling the system for t			a (Ghar) Thia ta	ot proof	ura must be maintained			
	e concrete pouring		ar), max. 0.01vir	ra (obar). This te	ist press	sure must be maintained			
ő			n safety valves	expansion vess	els etc.)	must be exempted from			
the test.			g. ourory varioo,		010 010.)				
Visual inspection	on of the piping syst	em/check per mano	ometer*.						
				or addition of a	nti-freez	ze to the heating water.			
If the anti-freez	e is not required fo	r normal operation,	the system mu	st be cleaned b	y empty	ving and flushing with at			
least three wate	er exchanges.								
* Pressure gauge	s must be used whi	ch clearly indicate p	pressure change	es of 0.01 MPa.					
Materials used		Pipes:	□ 20x2.0mm	□ 25x2.0mm					
		Pipe connectors:	Pressing	□ Clamping					
Log of the pressu	re test								
Start of the pressu	re test:	Start pressure:		Water tem	perature	e [°C]:			
End of the pressure	e test:	Final pressure:		Water tem	perature	e [°C]:			
Visual inspection o	f pipe connectors c	arried out?		\Box yes		□ no			
Position of couplin	gs marked in the ins	stallation plan?		\Box yes		🗆 no			
Leak tightness was identified in any co	established, no pe mponent?	rmanent form chan	ges	\Box yes		□ no			
Has the operating pressure been set on system handover?									
Comments									
Building owner		Site management		Qualified i	nstallat	ion company			
Date/signature/stan	ıp								

Viega Technology GmbH & Co. KG Viega Platz 1 57439 Attendorn Germany

Phone +49 (0) 2722 61-0

viega.com

INT · 709 365 · 2018-05 · VPN 170369

